郝君明-兰州理工大学beat365中文官方网站
  • beat365中文官方网站

    欢迎到访兰州理工大学beat365中文官方网站!

    副教授
    郝君明

    姓名:郝君明

    职称:副教授/硕导

    地址:兰州理工大学beat365中文官方网站

    邮编:730050

    电话:

    E-mail:haojm198@lzb.ac.cn

    主页:https://www.researchgate.net/profile/Junming-Hao/

    教育经历

    (1)2016-09至2021-01,中国科学院大学中国科学院西北生态资源环境研究院,地图学与地理信息系统,博士研究生,导师:吴通华;

    (2)2006-09至2009-06,西北师范大学,地图学与地理信息系统,硕士,导师:赵军;

    (3)2002-09至2006-06,山西师范大学,地理科学

    工作履历

    (1)2022-12至今,兰州理工大学,beat365中文官方网站,副教授

    (2)2012-07至2022-12,兰州理工大学,beat365中文官方网站,讲师

    (3)2009-07至2012-07,兰州理工大学,beat365中文官方网站,助教

    教学工作

    主要承担课程教学任务,本科生《工程测量》、《地球科学概论》、《空间分析和地统计》等,研究生《GIS空间分析》。参与编写《中国气候与生态环境演变:2021》、《新疆气候变化科学评估报告》、《冰冻圈地理学》和《冰冻圈概论》编写工作。指导学生竞赛获的国赛二等奖2项,大学生创新创业省级项目5项,社会实践校级优秀团队。

    研究领域

    北半球冻土灾害机理过程与遥感监测、黄土滑坡自动化分类、大范围InSAR地表形变监测、蒙古国土地精细化分类、土遗址近景摄影测量

    科研项目

    (1)甘肃省科学技术厅,甘肃省重大专项-社会发展类, 23ZDFA007,黄河上游黄土滑坡智能识别与多因素耦合灾变机理研究(课题二), 2023-11至2026-11, 100万元,在研,主持

    (2)甘肃省自然科学基金,项目编号:21JR7RA242,基于InSAR技术的祁连山多年冻土区地面沉降空间分布规律及归因分析,2021.11至2023.10,6万元,主持,结题;

    (3)科技部,国家重点研发计划“全球变化与应对”专项,项目编号:2020YFA0608500,北极陆地环境变化及其效应研究,2020.11至2025.10,721万元,在研,参与

    (4)国家自然科学基金项目,青年基金,项目编号:41601066,青藏高原多年冻土区土壤质地空间分布格局与制图研究,2017.01至2019.12,20万元,已结题,参与

    (5)国家自然科学基金委员会,面上项目, 41771076,长江源多年冻土退化对地下水和地表径流的影响机制研究, 2018-01-01至2021-12-31, 71万元,结题,参与

    (6)国家自然科学基金委员会,地区科学基金项目, 42261069,面向生态工程驱动的甘肃黄土高原植被恢复遥感监测与成效评估, 2023-01-01至2026-12-31, 33万元,在研,参与

    (7)国家自然科学基金委员会,地区科学基金项目, 42261028,极端气候事件诱发多年冻土斜坡失稳致灾机理研究与预测, 2023-01-01至2026-12-31, 33万元,在研,参与

    (8)青海省科学技术厅,青海省重点研发与转化计划, 2023-0204-SFC-0017,青海省湟水流域潜在地质灾害风险识别与监测预警关键技术研究与应用, 2023-01至2025-12, 130.51万元,在研,参与

    (9)甘肃省科学技术厅,甘肃省自然科学基金, 22JR5RA247,黄河源区近三十年沼泽湿地时空变化及其对气候变化的响应研究, 2022-07至2024-06, 6万元,在研,参与

    (10)甘肃省教育厅, 2022年甘肃省高等学校青年博士基金项目, 2022QB-052,黄河源区近三十年湖泊面积时空变化及其对气候变化的响应研究, 2022-06至2023-06, 8万元,在研,参与

    奖励与荣誉

    (1)荣获2021年兰州理工大学第二届“课程思政教学竞赛”三等奖

    (2)荣获2021年兰州理工大学第二届中青年讲课竞赛三等奖

    (3)兰州理工大学“三育人奖”,2013年

    (4)2010年,2011年,2012年,2013年兰州理工大学“优秀班主任”,2011年兰州理工大学“优秀辅导员”

    (5)甘肃省大中专学生志愿者暑期文化科技卫生“三下乡”社会实践优秀指导教师,2012年、2021年

    (6)参与项目获得甘肃省科技进步三等奖1项、甘肃省测绘学会科技进步二等奖1项。

    (7)2022年度兰州理工大学教学质量优秀。

    学术成果

    (1)Hao Junming; Jia Peiqian; Wu Tonghua; Li Wangping; chen Jie; Yang Xiaohui; Wu Xiaodong; Hu Guojie; Cui kai; Zhang Mingli ; Numerical analysis of the impacts of rainfall on permafrost related slope stability on the Qinghai-Tibet Plateau, Journal of Hydrology: Regional Studies,2023, 47: 101439

    (2)Li, Wangping; Lin, Qingrun;Hao, Junming; Wu, Xiaodong; Zhou, Zhaoye; Lou, Peiqing; Liu, Yadong. Landscape Ecological Risk Assessment and Analysis of Influencing Factors in Selenga River Basin[J/OL]. Remote Sensing, 2023, 15(17): 4262.

    (3)Hao J, Lin Q, Wu T, Chen J, Li W, Wu X, et al. Spatial–Temporal and Driving Factors of Land Use/Cover Change in Mongolia from 1990 to 2021. Remote Sens. 2023. 29; 15(7): 1813.

    (4)Hao, Junming; Wu, Tonghua*; Wu, Xiaodong; Hu, Guojie; Zou, Defu; Zhu, Xiaofan; Zhao, Lin; Li, Ren; Xie, Changwei; Ni, Jie; Yang, Cheng; Li, Xiangfei; Ma, Wensi; Investigation of a Small Landslide in the Qinghai- Tibet Plateau by InSAR and Absolute Deformation Model, Remote sensing. 2019.11(8): 1–20

    (5)郝君明,吴通华*,李韧,吴晓东,谢昌卫,朱小凡,李旺平,邹德富.胡国杰.杜二计.刘广岳.乔永平,青藏高原东北部青海玉树泥流滑坡特征和成因分析,冰川冻土, 2020. 42(2): 447–56

    (6)Chen, Jie; Wu, Tonghua; Zou, Defu; Liu, Lin; Wu, Xiaodong; Gong, Wenyu; Zhu, Xiaofan; Li, Ren; Hao,Junming; Hu, Guojie; Pang, Qiangqiang; Zhang, Jing; Yang, Sizhong ; Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau, Remote Sensing of Environment, 2022, 268: 112778

    (7)Ni, Jie; Wu, Tonghua*; Zhu, Xiaofan; Hu, Guojie; Zou, Defu; Wu, Xiaodong; Li, Ren; Xie, Changwei; Qiao, Yongping; Pang, Qiangqiang;Hao, Junming; Yang, Cheng; Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models, Journal of Geophysical Research:, 2021, 33(0): 2–31

    (8)Hu, Yan; Liu, Lin*; Wang, Xiaowen; Zhao, Lin; Wu, Tonghua; Cai, Jialun; Zhu, Xiaofan;Hao, Junming; Quantification of Permafrost Creep Provides Kinematic Evidence for Classifying a Puzzling Periglacial Landform, Earth Surface Processes and Landforms, 2020. 46(2): 465–77

    (9)Ni, Jie; Wu, Tonghua*; Zhu, Xiaofan; Wu, Xiaodong; Pang, Qiangqiang; Zou, Defu; Chen, Jie; Li, Ren; Hu, Guojie; Du, Yizhen;Hao, Junming; Li, Xiangfei; Qiao, Yongping; Risk Assessment of Potential Thaw Settlement Hazard in the Permafrost Regions of Qinghai-Tibet Plateau, Science of the Total Environment, 2021.776: 145855

    (10)Wang D, Wu T, Wu X, et al., 2021. Soil organic carbon distribution for 0–3 m soils at 1 km2 scale of the frozen ground in the Third Pole Regions[J]. Earth System Science Data Discussions: 1-30.

    (11)Ma W, Wu T, Wu X, et al., 2021. Warming could shift steppes to carbon sinks and meadows to carbon sources in permafrost regions: Evidence from the improved IBIS model[J]. CATENA, 200: 105168.

    (12)黄立鑫,郝君明,李旺平, et al., 2021.基于RBF神经网络-信息量耦合模型的滑坡易发性评价[J].中国地质灾害与防治学报, 32(6): 116-126.

    (13)Hu G, Zhao L, Zhu X, et al., 2020. Review of algorithms and parameterizations to determine unfrozen water content in frozen soil[J]. Geoderma, 368: 114277.

    (14)Hu Y, Liu L, Wang X, et al., 2020. Quantification of permafrost creep provides kinematic evidence for classifying a puzzling periglacial landform[J]. Earth Surface Processes and Landforms, 46(2): 465-477.

    (15)Zhu X, Wu T, Hu G, et al., 2020. Long-distance atmospheric moisture dominates water budget in permafrost regions of the Central Qinghai-Tibet plateau[J]. Hydrological Processes, 34(22): 4280-4294.

    (16)Hu G, Zhao L, Li R, et al., 2019. Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models[J]. Atmospheric Research, 220: 155-168.

    (17)Hu G, Zhao L, Wu X, et al., 2019. evalsuation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau[J]. Theoretical and Applied Climatology, 138(3-4): 1457-1470.

    (18)Yang C, Wu T, Wang J, et al., 2019. Estimating Surface Soil Heat Flux in Permafrost Regions Using Remote Sensing-Based Models on the Northern Qinghai-Tibetan Plateau under Clear-Sky Conditions[J]. Remote Sensing, 11(4): 416.

    (19)Zhu X, Wu T, Zhao L, et al., 2019. Exploring the contribution of precipitation to water within the active layer during the thawing period in the permafrost regions of central Qinghai-Tibet Plateau by stable isotopic tracing[J]. Science of the Total Environment, 661: 630-644.

    (20)Hu G jie, Tian L ming, Zhao L, et al., 2018. Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau[J]. Hydrological Sciences Journal, 63(11): 1733-1744.

    (21)Wang W, Wu T, Zhao L, et al., 2018. Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau[J]. Science of The Total Environment, 626: 366-376.

    (22)Wang W, Wu T, Zhao L, et al., 2018. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data[J]. Journal of Hydrology, 560: 220-229.

    (23)Hu G, Zhao L, Wu X, et al., 2017. A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan Plateau[J]. Geoderma, 306: 244-251.

    (24)Qin Y, Wu T, Zhao L, et al., 2017. Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 122(21): 11,604-11,620.

    (25)Zhu X, Wu T, Li R, et al., 2017. Impacts of Summer Extreme Precipitation Events on the Hydrothermal Dynamics of the Active Layer in the Tanggula Permafrost Region on the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 122(21): 11,549-11,567.

    beat365中文官方网站